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ABSTRACT

An optimal convergence condition for Newton iteration in a Banach space
is established. There exist problems for which the iteration converges but
the complexity is unbounded. We show what stronger condition must be imposed

to also assure '"good complexity".
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1. TINTRODUCTION

Numerous papers have analyzed sufficient conditions for the convergence
of algorithms for the solution of non-linear problems. In addition to con-
vergence, we consider another fundamental question. What stronger conditions

must be imposed to assure ''good complexity"? This is clearly one of the

crucial issues (in addition to stability) if one is interested in actual com-
putation. We believe it is also a most interesting theoretical question.

We consider Newton iteration for a simple zero of a non-linear operator
in a Banach space of finite or infinite dimension. We establish the optimal
radius of the ball of convergence with respect to a certain functional. There
exist problems where the iteration converges but the complexity increases log-
arithmically to infinity as the initial iterate approaches the boundary of
the ball of convergence. (This phenomenon does not occur in the Kantorovich
theory of operator equations; see Section 3.) We establish the optimal radius
of the ball of good complexity, W

In this paper we limit ourselves to the important case of Newton iteration.
In other papers (Traub and Wozniakowski [76b] and [(77]) we study optimal con-
vergence and complexity for classes of iterations.

We summarize the results of this paper. Definitions and theorems con-
cerning the optimal ball of convergence are given in Section 2. We conclude
this Section by giving conditions under which the radius of the ball of con-
vergence is a constant fraction of the radius of the ball of analyticity of
the operator.

Complexity of Newton iteration is studied in Section 3. We show that
Newton iteration may converge but have arbitrarily high complexity and conjec-

ture this is a general phenomenon. We establish the radius of the ball of

good complexity as well as a lower bound on the complexity of Newton iteration.




TN T

-

i it o e ¥

2. CONVERGENCE OF NEWTON ITERATION i

We consider the solution of the non-linear equation

(2.1) F(x) =0

where F: D © B1 - 32 and Bl, 82 are Banach spaces over the real or complex
fields of dimension N, N = dim(Bl) = dim(Bz), 1 <N <+=, We solve (2.1)

by Newton iteration which constructs the sequence [xi} as follows

2.2) Xigp =% - F'(xi)mlF(xi)

where x_ is an initial guess and i = 0,1,... . Suppose that F is sufficientiy

0
regular and o is a simple zero of (2.1), i.e., F(a) = 0 and F'(ao-l exists and

is bounded. It is well-known that if x_  is sufficiently close to & then {xi]

0
converges to o and the order of convergence is two, see, e.g., Kantorovich [48],
Ortega and Rheinboldt [70] and Rall [69].

In this paper we are interested in sharp bounds on how close X has to be
to o to get quadratic convergence of Newton iteration and how close X has to
be to o to guarantee good complexity.

We begin with a theorem which describes the character of convergence of

Newton iteration.

Let ~ be a simple zero of F, . B lhi-nlland J= {x: |k-afl £ T}. Assume

F'(x) existe and is a Lipschitz operator for x € J. Define

e = eup L@ L GO -F () 3]
(2.2) A2 A2( ) XT;ZJ 2Tyl ¢

Note that if F" is continuous for x € J then




=1 F"(x)
> |

(M = sup |F'(®
A2 x€J

* : which shows that in this case Az is a bound on the 'normalized" second derivative.

Let q be any number such that 0 < q < 1.

Theorem 2.1

If F' is a Lipschitz operator in J,

e O
2.3) AZF T+2q *

(2.4) x, € J,

0

then Newton iteration is well-defined and

(2.5) lim X g = e, < qe,, Wi,
2
(2.6) €1 < Ci ey

= / >
where Ci Az,(l 2A2ei).

If F is continuously twice-differentiable at « then

@.7) x, - o =3 F @ @ -+ o(lkg-all) .

i+l

The proof is by induction. Let xg € J and let

(2.8) R(xix,) = j;[r'(xi + txex)) = F'(x) Jxex ) de,

Define w = w(x;xi) as the polynomial of first degree which interpolates F(xi)
and F'(xt). Then w(x;xx) = F(xt) + F'(xi)(x-xi) and the next approximation

x is the zero of w whenever F'(xi) is invertible. From Rall [69, p.124]

i+1

we get the error formula




(2.9) F(x) - w(x;xi) = R(x;xi)

* for x € J while due to (2.2),

(2.10) Ih"(a)'lux;xi) | = A2“x-xi“2.

From the definition of A, we have

2
_F! -1, s < <29
| llI-F' ()" F' (0 || =< 24, [k-o|| < 24,7 Te2q < -
This means that F'(x) is invertible for any x € J and X is well-defined.

] Furthermore

F' o™l (| 5 1/1 - 24, ko)),

see Rall [69, p.36]. We can rewrite the polynomial w as w(x;xi) = F! (xi) (x-x, .).

i+l
= i 1 > = = . :
Set x = o in (2.9). Then F (xi) (xi+1 a) R(a,xi) which yields

A e

1 2 p AT .
1-2A.e. 1-2A.7 1
i 2

2
“xi+1-0” = |F' (xi)- F' (a)F' (q)-lR(a;xi) I| < :

due to (2.3). This proves (2.5) and (2.6).

If F"(x) is continuous at @ then

2
R(w;xi) = % F'"(o) (Xi‘a) +* 0(“‘1’0’”2):

F'(x;) = F'(a) + 0(||xi-a“ )
which implies (2.7). i3

Remark 2.1
Theorem 2.1 states quadratic convergence of Newton iteration since g
|

2 /
< < - ¥ 3 <
el Ciei and C1 A2/ (1 2A2e0) It is known (see Ortega and Rheinboldt
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[70, p.319]) that if F' is not a Lipschitz operator then Newton iteration
does not possess, in general, quadratic convergence. For instance, apply-

ing Newton iteration to F(x) = x + xa where a = 5/3 we get

€™ (a-l)e:/(l + aea-l). ®

i+ i

Remark 2.2

Theorem 2.1 states how fast Newton iteration converges. The speed of
convergence depends on the value of q. This technique based on q seems to be
general and can be applied for any iteration. See Traub and Wozniakowski [77]
where the class of interpolatory iterations In’ n = 3, is considered. 8

We show that if we want (2.5) to hold then (2.3) is sharp for any value

of q, 0 <q < 1.

Theorem 2.2
There exists an entire F such that

S0l (6 -
Azf > T+2q and ey [ imply ey > qe;.

for every value of q € (0,1).

Proof

Let F(x) = x + x2, x € X. Then o« = 0 and AZ(T) = 1. Suppose that
AZF =T > q/(1 + 2q) and let X, = -, The next approximation X, constructed

by Newton iteration is equal to X; = X5 - F'(xo)-lF(xo) = Tz/(l-Zr) >ql = =qx.
=

Hence e, > qe

1 0°
From theorem 2.1 with q - 17 it follows that Newton iteration converges

whenever

e s e




Theorem 2.3

Proof

A,T < 1/3.

We show that there exists a problem F such that A, = 1/3 and e, = T imply

that Newton iteration does not converge.

There exists a problem F where F' is a Lipschitz operator such that if
1
A,T=xzand e, =T

2 3 0

then Newton iteration is not convergent.

Define

X + x2 for x s 0
(2.11) F(x) =
X - % for x 2 0.
Then F(0) = 0, F'(0) = 1 and F' is a Lipschitz function with AZ(T) = 1. Let
1 1 1 1
B 3 and Xy = -3- Then X =3 and Xy = -3- Hence Newton iteration cycles
and is not convergent. [

Rall [74] showed that assuming the existence of o and using the Kantorovich

theorem it is necessary to assume

,’-
A,T 52—}3 £ 0.15.

Thus we have obtained an improvement by a factor of ﬁiédz 2.3

We define optimal convergence number. Let X € R be a set of
positive numbers r such that for any F with a simple zero «~ such that F' is

a Lipschitz operator in J, AZF < r implies that an iteration converges

-

whenever Iho-m“ B
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Definition 2.1

r, is called the optimal convergence number (with respect to

fl) if

| r, = sup X. s

| From theorem 2.1 and theorem 2.3 we have 14

-~

L

Corollary 2.1

For Newton iteration

e

(2.11) £y 1/3. ]

— .

Consider the non-linear scalar equation i

g(M = AZ(T)F, rzo.

Provided F is not linear, g(T") is strictly increasing, g(0) = 0, g(® = =«
Let h denote the inverse function g-l. Then Newton iteration converges

provided l#o-a” s h(r), r < %.

Definition 2.2

: Rc is called the optimal radius of the ball of convergence (with respect
; to A,) if

R, = h(rc). ]

Corollary 2.2

For Newton iteration

K, = h(1/3). ]
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Remark 2.3

Let © and § be any two iterations whose convergence condition is of the
form AZ(F)F < r. Let rc(w), rc(w) denote the optimal convergence numbers of
oand ¥, and let Rc(w), Rc(ﬁ) denote the corresponding optimal radii of the

ball of convergence. Then g

rc($) < rc(w)

implies
R.(®) SR_(¥).

Therefore the optimal radii of convergence of two iterations can be ordered

if their convergence numbers are ordered. L]

In general, Newton iteration converges only locally. We give conditions
under which Newton iteration enjoys a '"type of global convergence'.

Let F(x) = z‘ %7 F(i)(a)(xi-‘y)i be analytic in D = {x: |&-a” <R} and

j=1

for 1 = 2,3....4 R = x

One way to find K is to use Cauchy's formula

@ TP
il Ri

where M = sup lr'(y)-lF(x)]]. Setting K = max(%, !2> we get M/R S KR S (KR)i'.1
€D R

X 5 3
which yields M/r' < xi™1,

Theorem 2.4

If F satisfies (2.12) then Newton iteration converges in J = [x: Ih-an < F]

where




Cc

1 ot
(2.13) T X and €y =E

Proof
since [F' (0 TP 0 || = £ (|k-a| ) where £(x) = %/ (1 - Kx) then

A, (DT = — <3
(1-KT)

c
which yields I' = -l-(-ldwith °; E%. This proves (2.13). [ ]

Note that this result is especially interesting if the domain radius R is

approximately equal to 1/K, say R = ¢ /K. Then [ = £aS R s R and Newton
2 K 5. o 602
iteration enjoys a "type of global convergence'.
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3. COMPLEXITY OF NEWTON ITERATION

In the previous section we showed that the sequence of errors o Bl Iki-a”

for Newton iteration satisfies

N

A e’

i+1 = 1-2a

(3.1) e e

whenever A2e0 < 1/3.

N e

We want to find X such that k is the smallest index for which e < e'eo where

ey 0 <e' <1, is a given number. Define € < e¢' so that
(3.2) e = eeo.

The complexity of Newton iteration, which is the total cost of computing X

k =2 1, is given by
(3.3) comp =k - ¢

where ¢ is the cost of one Newton step. (See Traub and Wozniakowski [76a]

for a detailed discussion.) Let c(F(j)) denote the cost of one evaluation of
F(j), j =0 and 1, and let the combinatory cost d be the cost of evaluating
-1
= - 1 3
X1 TX F (xi) F(xi). Then the cost per step is given by

(3.4) c =c(F) + c(F') + d.

Note that the dimension of the problem N < +=, For multivariate problems,

R
§)

N < +®, we can assume that each arithwaetic operation costs unity and c(F
can denote the total number of arithmetic operations needed to evaluate F

and d = d(N) is the cost of the solution of the linear system

F'(xi)(xi+1'xi) = -F(xi). Hence d(N) = O(Na) with B < 3.
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For the rest of this section N S 4+, Define
At
(3.5) fi+1 = T—TA;f—i-’ fo = eo, i=0,1,... .

Clearly, the sequence {fi} is a majorizing sequence of {eil, i.e., e

¥i. Let comp, = klc where k1

course, comp < comp, . Let p = Azf

0

We derive some properties of comp, as p approaches 1/3 (which is the necessary

and sufficient condition for guaranteeing convergence).

Lemma 3.1
Let n be any fixed integer. 1If p = 2. § with 6§ <
3 an+1
= i+1
(3.6) fi (1 gi5)f0 where 0 < g, S 4

for L = 0,1,..., .

Proof

is the smallest index for which fk < ege

i

then

i

Assume by induction that fi = (1 - gib)fo with 0 < gi < a1+ -4,

$301 = %

then g1+l 2 0 and
2
p(l-g,8) £,

T R T-20(1-¢  ®

which yields after algebraic manipulations

2 | 142 2
By S4B FOH3E M SLT b+ 30 -3 sk

This proves (3.6).

We are ready to prove

i+2

- 4.

0.
= Azeo. Note that comp, = compl(c,p).

< fl'

of

Since
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Lemma 3.2

3.7) 6 18(—) (1 + 0o(1)) s comp, (¢,p) < c log(g )(1 + o(1))

where p = -% - 85 with 6 » 0" and lg is the logarithm to base 2. ]
Proof

Recall that comp, = klc and we seek bounds on kl. Since

‘. -36 21 ¢
*12A,t, ZA 7 2f 1+66

k1 < 1g<+lg(‘)/1g (1+66> = 1g (1 + o(l)).

This proves the righthand side of (3.7).

then

Let 8= 1/4™, From Lenma 3.1 for i = 1,2,...,(n/2] we get

n+l

i+l -n
f,2(@1- @ -4)/4 Y, 2 (1-2 ) > of

0

for large n. Thus k, 2 n/2] --}; 1g(—2)(1 + 0(1)) which proves the lefthand

side of (3.7). 8

Lemma 3.2 states the important difference between convergence and complex-
ity of the sequence {fi)' p < -;— assures convergence of {fi] but with only
this condition complexity can be arbitrarily (logarithmically) large.

We believe results similar to Lemma 3.2 also hold for comp (rather than

compl) of an arbitrary iteration and therefore propose

Conjecture 3.1

For any superlinear iteration $ there exists a function F with a simple

zero « and a number I', 0 < T < +®, such that

e

T




|

(1) the sequence Xip1 = G(xi,F) constructed by the iteration &
is convergent to o and Ibci+1~a” = Iki-a”. ¥i, whenever an

initial approximation X, is any point of J = {x: |k-o|/< I}

(i11) the complexity comp, which is now a function of X and e,
satisfies
lim comp(xo,e) = 4o, Ve > 0, |

Xyt “xo-or”-‘ r
Conjecture 3.1 states that starting from any point of J we get convergence;

however, comp(xo;c) can be arbitrarily high when X approaches the boundary of

J.

We prove Conjecture 3.1 for Newton iteration.

Theorem 3.1

If Newton iteration is applied to

X + x2 for x s 0
(3.8) F(x) =

X - X for x 2 0
then for € fixed comp(xo,c) tends logarithmically to infinity as A2F approaches

1/3 and Xy = T.

Proof

Note that &« = 0 and Az(!") = 1, see (2.11). Applying Newton iteration to

(3.8) we get

-sign(xi)xi ei
Xipd I-Zsign(x )x, sad o, = T-2e,

which is equivalent to (3.5) with A2 = 1. Let X, = = 31 - 8. From Lemma (3.2)

we get




comp (X €)
Lo)) s ——2— = Wo() s 8- 0.

c lgCE)
a

This proves theorem 3.1.

If h =2+ (in

This phenumenon does not occur in the Kantorovich theory. 2

the usual notation; see Rall [74]), Newton iteration converges linearly and

the complexity is always bounded for fixed €. Furthermore the complexity

depends on lg(l/e) rather than 1lglg(l/€) only if o is not a simple zero.

Note that F defined in (3.8) is not twice-differentiable at «. It
seems to us that comp can tend to infinity as A2T approaches 1/3 for twice-

differentiable problems. Therefore we propose

Conjecture 3.2

There exists a twice-differentiable problem F with a simple zero « such
that the comp = comp(Azr) of Newton iteration satisfies
lim comp(Azr') = 4 [ |
A2r~1/3

Theorem 3.1 states that if Azr is close to 1/3 then complexity can be

arbitrarily large. We seek a bound on AZF (stronger than A.T < 1/3) to be

2

sure that complexity is not too large. Define
(3.9) t = max(l, lg 1/e).

Theorem 3.2

If A,T < 1/4 then the complexity of Newton iteration satisfies

(3.10) comp s c lg(l+t).
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Proof

0
Let h, . xhi with K = Az/(l - 2A2e0) and hy = e, From (3.1), e, s hi.
1

vi. In Traub and Wozniakowski [76a] we proved that if w = (Keo)- 2 2 then

the complexity comp(h) of the sequence {hi} is bounded by
comp(h) < c lg(l+t).
Since comp s comp(h), (3.10) follows. ]

Remark 3.1
We have chosen the endpoint w = 2 in the inequality w 2 2 only for con-
venience and definiteness. Any value w bounded away from unity can be used

to get a good bound on complexity. a

Theorem 3.2 motivates the definition of the optimal complexity number for

a superlinear iteration. Let Y C R be a set of positive numbers r such that
for any F with a simple zero « such that F' is a Lipschitz operator in J,
AZF < r implies that an iteration converges and comp S c lg(l+t), vt 2 1,

whenever |k0-aH $ £,

Definition 3.1

:Sfis called the optimal complexity number [with respect to A2 and the

complexity criterion comp < c lg(l+t)] for a superlinear iteration if

r = sup Y. [
g P

Compare with the definition of the optimal convergence number r.- of

course rg < L and from Theorem 3.2 follows that rg 2 1/4.




Theorem 3.3

For Newton iteration

Sl

3.11) t'8 =

Proof
Let F(x) = x + x2. Then F(a) = 0, F'(2) = 1 and AZI' = [, Newton itera-

tion produces {xi] such that

2

*y

(3.12) x = .
i+1 1+2xi

1

1
Let t = 1, Then comp < c which means that e, SE ey Set Xy = ., T'< 2 °

From (3.12) we get

which is equivalent to T < 1/4. Hence AZI" Srg Szl- and from theorem 3.2 we
.

1
conc lude r:8 - 5

Remark 3.2
It follows from Remark 3.1 that as long as A,T is bounded away from 1/3

we are assured of good complexity. w

We summarize our results on optimal convergence number and optimal com-

plexity number (Corollary 2.1 and Theorem 3.3):

(1) Azeo < B ™ 1/3 assures convergence but complexity can be arbitrarily

large

(11) Aye, < 5. 1/4 assures convergence and good complexity.
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Definition 3.2 4

Rg is called the optimal radius of the ball of good complexity [with

respect to Az and comp < ¢ 1g(l+t)] for a superlinear iteration if

R8 = h(rg). '
Corollary 3.1
For Newton iteration
R, = h(1/4). |

Remark 3.3
A remark analogous to Remark 2.3 holds here concerning the ordering of

the optimal radii of good complexity for two iterationms. B

The ratio between the optimal radius of the ball of convergence and the

optimal radius of the ball of good complexity,

0Q

wl ~
(¢]
n
==
~~
e G
~lw
S N

indicates what stronger condition must be imposed to assure good complexity.
We end this paper by deriving a lower bound on the complexity of Newton

iteration. Let F be any operator for which

2
(3.13) € 2 ae,
for a positive a2. We show that the class of such operators is not empty.
Let 1
F(X) =3 -a a>0,x #0.
Then 2
®ie1 T "%
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Recall that ¢ = ¢(F) + c(F') + d is the cost of one Newton step where d

is the cost of solving a linear system of size N. Let L and cu denote lower

and upper bounds on c. If ae, 2 1/t, then Theorem 3.1 in Traub and

Wozniakowski [76a] yields comp 2 c, (1gt-1glge).

We summarize the complexity analysis for Newton iteration.

Theorem 3.4

If

1 1
Ayeg <7 and aje, 27

then the complexity of Newton iteration satisfies
cL(lgt-lglgt) < comp < cU 1g (14t)
where t = max(l, 1lg 1/¢).
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